フラクタル

提供:kuhalaboWiki
2020年11月2日 (月) 05:58時点におけるKuha (トーク | 投稿記録)による版

移動: 案内, 検索

目次

概要

フラクタル wikipedia

古代ギリシャからあるユークリッド幾何学と20世紀のフラクタル幾何学の比較

考察
古代エジプト人は3:4:5の辺を持つ三角形で直角が得られることを知っていた.ピラミッドなどの巨大建造物.
三平方の定理を発見したピタゴラスはどこがすごいか?

フラクタル日除け

Nature of Code, Ch 8 Fractals
https://github.com/nature-of-code/noc-examples-processing/tree/master/chp08_fractals

再帰的呼び出し

再帰的(recursive)呼び出しとは,サブルーチンや関数が,自分自身を呼び出すアルゴリズムをいう。 これを利用すると,複雑な手順を簡潔に記述することができる。

再帰的(Recursive)呼び出し
"Recursive"という言葉を「頭山的」と訳した人がいる。
落語「自分の頭の上に穴があいて池ができた。その人が将来を悲観して,その池に身を投げた」
  • 再帰的な定義の例: GNU: " GNU is Not Unix "

再帰は数学的帰納法であり,「局所的なルールで全体を記述する」ことである。 i)最初のコマを倒す。ii)n番目のコマが倒れると,n+1番目のコマも倒れる。iii)すべてのコマが倒れる。

nの階乗を再帰と反復で計算する際の比較
n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1
1! = 1
//  再帰:n!=n*(n-1)! という漸化式で計算する。
    int factorial(int n){
      if (n == 1){
        return 1;
      }else{
        return n * factorial(n-1); //再帰的呼び出し
      }
    }

// 反復:1からnまでを乗算する。
   int factorial(int n){
     int f = 1;
     for (int i = 0; i < n; i++){
        f = f * (i+1);
     }
     return f;
   }

再帰的な円

void setup() {
  size(640,360);  
}

void draw() {
  background(255);
  drawCircle(width/2,height/2,400); 
  noLoop();
}

// Recursive function
void drawCircle(float x, float y, float r) {
  stroke(0);
  noFill();
  ellipse(x, y, r, r);
  if(r > 2) {
    // Now we draw two more circles, one to the left
    // and one to the right
    drawCircle(x + r/2, y, r/2);
    drawCircle(x - r/2, y, r/2);
  }
}

コッホ図形

Koch.jpg Koch2.jpg

全体

// Renders a simple fractal, the Koch snowflake
// Each recursive level drawn in sequence

KochFractal k;

void setup() {
  size(800,250);
  background(255);
  frameRate(1);  // Animate slowly
  k = new KochFractal();
}

void draw() {
  background(255);
  // Draws the snowflake!
  k.render();
  // Iterate
  k.nextLevel();
  // Let's not do it more than 5 times. . .
  if (k.getCount() > 5) {
    k.restart();
  }
}

KochFractalクラス

// Koch Curve
// A class to manage the list of line segments in the snowflake pattern

class KochFractal {
  PVector start;       // A PVector for the start
  PVector end;         // A PVector for the end
  ArrayList<KochLine> lines;   // A list to keep track of all the lines
  int count;
  
  public KochFractal() {
    start = new PVector(0,height-20);
    end = new PVector(width,height-20);
    lines = new ArrayList<KochLine>();
    restart();
  }

  void nextLevel() {  
    // For every line that is in the arraylist
    // create 4 more lines in a new arraylist
    lines = iterate(lines);
    count++;
  }

  void restart() { 
    count = 0;      // Reset count
    lines.clear();  // Empty the array list
    lines.add(new KochLine(start,end));  // Add the initial line (from one end PVector to the other)
  }
  
  int getCount() {
    return count;
  }
  
  // This is easy, just draw all the lines
  void render() {
    for(KochLine l : lines) {
      l.display();
    }
  }

  // Step 1: Create an empty arraylist
  // Step 2: For every line currently in the arraylist
  //   - calculate 4 line segments based on Koch algorithm
  //   - add all 4 line segments into the new arraylist
  // Step 3: Return the new arraylist and it becomes the list of line segments for the structure
  
  // As we do this over and over again, each line gets broken into 4 lines, which gets broken into 4 lines, and so on. . . 
  ArrayList iterate(ArrayList<KochLine> before) {
    ArrayList now = new ArrayList<KochLine>();    // Create emtpy list
    for(KochLine l : before) {
      // Calculate 5 koch PVectors (done for us by the line object)
      PVector a = l.start();                 
      PVector b = l.kochleft();
      PVector c = l.kochmiddle();
      PVector d = l.kochright();
      PVector e = l.end();
      // Make line segments between all the PVectors and add them
      now.add(new KochLine(a,b));
      now.add(new KochLine(b,c));
      now.add(new KochLine(c,d));
      now.add(new KochLine(d,e));
    }
    return now;
  }

}

KochLineクラス

// Koch Curve
// A class to describe one line segment in the fractal
// Includes methods to calculate midPVectors along the line according to the Koch algorithm

class KochLine {

  // Two PVectors,
  // a is the "left" PVector and 
  // b is the "right PVector
  PVector a;
  PVector b;

  KochLine(PVector start, PVector end) {
    a = start.get();
    b = end.get();
  }

  void display() {
    stroke(0);
    line(a.x, a.y, b.x, b.y);
  }

  PVector start() {
    return a.get();
  }

  PVector end() {
    return b.get();
  }

  // This is easy, just 1/3 of the way
  PVector kochleft() {
    PVector v = PVector.sub(b, a);
    v.div(3);
    v.add(a);
    return v;
  }    

  // More complicated, have to use a little trig to figure out where this PVector is!
  PVector kochmiddle() {
    PVector v = PVector.sub(b, a);
    v.div(3);
    
    PVector p = a.get();
    p.add(v);
    
    rotate(v,-radians(60));
    p.add(v);
    
    return p;
  }    

  // Easy, just 2/3 of the way
  PVector kochright() {
    PVector v = PVector.sub(a, b);
    v.div(3);
    v.add(b);
    return v;
  }
}

  public void rotate(PVector v, float theta) {
    float xTemp = v.x;
    // Might need to check for rounding errors like with angleBetween function?
    v.x = v.x*cos(theta) - v.y*sin(theta);
    v.y = xTemp*sin(theta) + v.y*cos(theta);
  }
個人用ツール
名前空間

変種
操作
案内
ツールボックス