フラクタル
提供:kuhalaboWiki
(版間での差分)
(→シンプルな例) |
(→樹木) |
||
221行: | 221行: | ||
== 樹木 == | == 樹木 == | ||
+ | |||
+ | [[ファイル:Tree01.png]] | ||
+ | |||
+ | [[ファイル:Tree02.png]] | ||
==== シンプルな例 ==== | ==== シンプルな例 ==== |
2020年11月2日 (月) 09:29時点における版
目次 |
概要
古代ギリシャからあるユークリッド幾何学と20世紀のフラクタル幾何学の比較
- 考察
- 古代エジプト人は3:4:5の辺を持つ三角形で直角が得られることを知っていた.ピラミッドなどの巨大建造物.
- 三平方の定理を発見したピタゴラスはどこがすごいか?
- Nature of Code, Ch 8 Fractals
- https://github.com/nature-of-code/noc-examples-processing/tree/master/chp08_fractals
再帰的呼び出し
再帰的(recursive)呼び出しとは,サブルーチンや関数が,自分自身を呼び出すアルゴリズムをいう。 これを利用すると,複雑な手順を簡潔に記述することができる。
- 再帰的(Recursive)呼び出し
- "Recursive"という言葉を「頭山的」と訳した人がいる。
- 落語「自分の頭の上に穴があいて池ができた。その人が将来を悲観して,その池に身を投げた」
- 再帰的な定義の例: GNU: " GNU is Not Unix "
再帰は数学的帰納法であり,「局所的なルールで全体を記述する」ことである。 i)最初のコマを倒す。ii)n番目のコマが倒れると,n+1番目のコマも倒れる。iii)すべてのコマが倒れる。
- nの階乗を再帰と反復で計算する際の比較
- n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1
- 1! = 1
// 再帰:n!=n*(n-1)! という漸化式で計算する。 int factorial(int n){ if (n == 1){ return 1; }else{ return n * factorial(n-1); //再帰的呼び出し } } // 反復:1からnまでを乗算する。 int factorial(int n){ int f = 1; for (int i = 0; i < n; i++){ f = f * (i+1); } return f; }
再帰的な円
void setup() { size(640,360); } void draw() { background(255); drawCircle(width/2,height/2,400); noLoop(); } // Recursive function void drawCircle(float x, float y, float r) { stroke(0); noFill(); ellipse(x, y, r, r); if(r > 2) { // Now we draw two more circles, one to the left // and one to the right drawCircle(x + r/2, y, r/2); drawCircle(x - r/2, y, r/2); } }
コッホ図形
直線を3等分して、中央に正三角形を描く。
上記の操作を4回繰り返す。
ソース例
// Koch Curve // Renders a simple fractal, the Koch snowflake // Each recursive level drawn in sequence ArrayList<KochLine> lines ; // A list to keep track of all the lines void setup() { size(383, 200); background(255); lines = new ArrayList<KochLine>(); PVector start = new PVector(0, 150); PVector end = new PVector(width, 150); lines.add(new KochLine(start, end)); for (int i = 0; i < 5; i++) { generate(); } smooth(); } void draw() { background(255); for (KochLine l : lines) { l.display(); } } void generate() { ArrayList next = new ArrayList<KochLine>(); // Create emtpy list for (KochLine l : lines) { // Calculate 5 koch PVectors (done for us by the line object) PVector a = l.kochA(); PVector b = l.kochB(); PVector c = l.kochC(); PVector d = l.kochD(); PVector e = l.kochE(); // Make line segments between all the PVectors and add them next.add(new KochLine(a, b)); next.add(new KochLine(b, c)); next.add(new KochLine(c, d)); next.add(new KochLine(d, e)); } lines = next; }
KochLineクラス
- 5つの点a,b,c,d,eを得る。
- 点bは、ベクトルAEの1/3
- 点dは、ベクトルAEの2/3
- 点cは、点bを中心に点dを60度回転
// Koch Curve // A class to describe one line segment in the fractal // Includes methods to calculate midPVectors along the line according to the Koch algorithm class KochLine { // Two PVectors, // a is the "left" PVector and // b is the "right PVector PVector start; PVector end; KochLine(PVector a, PVector b) { start = a.get(); end = b.get(); } void display() { stroke(0); line(start.x, start.y, end.x, end.y); } PVector kochA() { return start.get(); } // This is easy, just 1/3 of the way PVector kochB() { PVector v = PVector.sub(end, start); v.div(3); v.add(start); return v; } // More complicated, have to use a little trig to figure out where this PVector is! PVector kochC() { PVector a = start.get(); // Start at the beginning PVector v = PVector.sub(end, start); v.div(3); a.add(v); // Move to point B v.rotate(-radians(60)); // Rotate 60 degrees a.add(v); // Move to point C return a; } // Easy, just 2/3 of the way PVector kochD() { PVector v = PVector.sub(end, start); v.mult(2/3.0); v.add(start); return v; } PVector kochE() { return end.get(); } }
応用例
- https://github.com/nature-of-code/noc-examples-processing/tree/master/chp08_fractals/NOC_8_05_Koch
- https://github.com/nature-of-code/noc-examples-processing/tree/master/chp08_fractals/Exercise_8_02_KochSnowFlake
樹木
シンプルな例
// Recursive Tree // Renders a simple tree-like structure via recursion // Branching angle calculated as a function of horizontal mouse position float theta; void setu0p() { size(1000, 800); smooth(); } void draw() { background(255); // Let's pick an angle 0 to 90 degrees based on the mouse position theta = PI/6;//map(mouseX,0,width,0,PI/2); // Start the tree from the bottom of the screen translate(width/2, height); stroke(0); branch(200,0); save("chapter08_exc06.png"); noLoop(); } void branch(float len, int level) { // Each branch will be 2/3rds the size of the previous one //float sw = map(len,2,120,1,10); //strokeWeight(sw); strokeWeight(2); line(0, 0, 0, -len); // Move to the end of that line translate(0, -len); len *= 0.66; level++; // All recursive functions must have an exit condition!!!! // Here, ours is when the length of the branch is 2 pixels or less if (level < 5) { pushMatrix(); // Save the current state of transformation (i.e. where are we now) rotate(theta); // Rotate by theta branch(len,level); // Ok, now call myself to draw two new branches!! popMatrix(); // Whenever we get back here, we "pop" in order to restore the previous matrix state // Repeat the same thing, only branch off to the "left" this time! pushMatrix(); rotate(-theta); branch(len,level); popMatrix(); } }